Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Pediatric Infect Dis Soc ; 12(3): 135-142, 2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-20237722

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu), and Moraxella catarrhalis (Mcat) nasopharyngeal colonization precedes disease pathogenesis and varies among settings and countries. We sought to assess colonization prevalence, density, Spn serotypes, and antibiotic resistance in children in the first 6 months of life in pediatric primary care settings. METHODS: Prospective cohort study in Rochester, NY during 2018-2020. Nasopharyngeal swabs were collected from 101 children at age 1, 2, and 3 weeks, then 1, 2, 4, 6, 9, 12, 15, 18, and 24 months. Spn serotypes were determined by Quellung. Oxacillin resistance for Spn and ß-lactamase production by Hflu and Mcat was tested. All children received PCV13 vaccine according to U.S. recommended schedule. RESULTS: Spn, Hflu, and Mcat colonization was detected in only 5% of infants before age 2 months old. Cumulative prevalence was 34% for Spn, 10% for Hflu, and 53% for Mcat in children ≤6 months of age. Nasopharyngeal bacterial density of Spn, Hflu, and Mcat (x = 2.71 log) in children ≤6 months of age was lower than at 7-24 months of age (x = 3.15 log, p < 0.0001). Predominant serotypes detected ≤6 months of age were 23B (16.7%), 22F (12.9%), 15B/C (11%), and 16F (9.2%). In total, 14.8% of Spn isolates were oxacillin resistant and 66.7% of Hflu isolates were ß-lactamase producing. CONCLUSION: Spn, Hflu, and Mcat nasopharyngeal colonization was uncommon and of low density among children ≤6 months old, especially among children <2 months of age. Non-PCV13 serotypes predominated and a different serotype distribution was observed in ≤6-month olds compared to 7- to 24-month olds.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Infant , Child , Child, Preschool , Cohort Studies , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Moraxella catarrhalis , Prospective Studies , New York/epidemiology , Haemophilus influenzae , Drug Resistance, Microbial , beta-Lactamases , Oxacillin , Carrier State
2.
Sci Total Environ ; 887: 163781, 2023 Aug 20.
Article in English | MEDLINE | ID: covidwho-2309588

ABSTRACT

During the pandemic of COVID-19, the amounts of quaternary ammonium compounds (QACs) used to inactivate the virus in public facilities, hospitals and households increased, which raised concerns about the evolution and transmission of antimicrobial resistance (AMR). Although QACs may play an important role in the propagation of antibiotic resistance gene (ARGs), the potential contribution and mechanism remains unclear. Here, the results showed that benzyl dodecyl dimethyl ammonium chloride (DDBAC) and didecyl dimethyl ammonium chloride (DDAC) significantly promoted plasmid RP4-mediated ARGs transfer within and across genera at environmental relevant concentrations (0.0004-0.4 mg/L). Low concentrations of QACs did not contribute to the permeability of the cell plasma membrane, but significantly increased the permeability of the cell outer membrane due to the decrease in content of lipopolysaccharides. QACs altered the composition and content of extracellular polymeric substances (EPS) and were positively correlated with the conjugation frequency. Furthermore, transcriptional expression levels of genes encode for mating pairing formation (trbB), DNA replication and translocation (trfA), and global regulators (korA, korB, trbA) are regulated by QACs. And we demonstrate for the first time that QACs decreased the concentration of extracellular AI-2 signals, which was verified to be involved in regulating conjugative transfer genes (trbB, trfA). Collectively, our findings underscore the risk of increased disinfectant concentrations of QACs on the ARGs transfer and provide new mechanisms of plasmid conjugation.


Subject(s)
COVID-19 , Quaternary Ammonium Compounds , Humans , Ammonium Chloride , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Plasmids
3.
J Med Virol ; 95(4): e28727, 2023 04.
Article in English | MEDLINE | ID: covidwho-2305840

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is ongoing and multiple studies have elucidated its pathogenesis, however, the related- microbiome imbalance caused by SARS-CoV-2 is still not clear. In this study, we have comprehensively compared the microbiome composition and associated function alterations in the oropharyngeal swabs of healthy controls and coronavirus disease 2019 (COVID-19) patients with moderate or severe symptoms by metatranscriptomic sequencing. We did observe a reduced microbiome alpha-diversity but significant enrichment of opportunistic microorganisms in patients with COVID-19 compared with healthy controls, and the microbial homeostasis was rebuilt following the recovery of COVID-19 patients. Correspondingly, less functional genes in multiple biological processes and weakened metabolic pathways such as carbohydrate metabolism, energy metabolism were also observed in COVID-19 patients. We only found higher relative abundance of limited genera such as Lachnoanaerobaculum between severe patients and moderate patients while no worthy-noting microbiome diversity and function alteration were observed. Finally, we noticed that the co-occurrence of antibiotic resistance and virulence was closely related to the microbiome alteration caused by SRAS-CoV-2. Overall, our findings demonstrate that microbial dysbiosis may enhance the pathogenesis of SARS-CoV-2 and the antibiotics treatment should be critically considered.


Subject(s)
COVID-19 , Microbiota , Humans , SARS-CoV-2 , Dysbiosis , Drug Resistance, Microbial
4.
Microb Pathog ; 174: 105923, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2290808

ABSTRACT

Antibiotic resistance has become an indispensably alarming menace to the global community. The primary factors are overuse and abuse of antibiotics, lack of novel medicines under development, the health care industry's focus on profit, and the absence of diagnostic testing prior to the prescription of antibiotics. Additionally, over the past few decades, the main factors contributing to the global spread of antibiotic resistance have been the overuse of antibiotics in livestock and other animals, drug efficacy, development of fewer new vaccines, environmental toxicity, transmission through travel, and lack of funding for healthcare research and development. These factors have accelerated resistance in microorganisms through structural and functional modifications in bacteria such as reduced drug permeability, increased efflux pumps, enzymatic antibiotic modification, and change in drug target, intracellular infection, and biofilm creation. There has been an increase in resistance during the pandemic and among cancer patients due to improper prescriptions. A number of modern therapeutic alternatives have been developed to curb widespread antibiotic resistance such as nanoparticle, bacteriophage, and antimicrobial biochemical approaches. It is high time to explore new alternatives to curtail enormous increase in resistant pathogens which could be an incurable global confrontation. This review highlights the complete insight on the global drivers of resistance along with the modes of action and impacts, finally discussing the latest therapeutic alternatives.


Subject(s)
Bacteria , Pandemics , Animals , Drug Resistance, Microbial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Travel
5.
BMC Prim Care ; 24(1): 93, 2023 04 10.
Article in English | MEDLINE | ID: covidwho-2295505

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is a major global health issue, bringing significant health burden and costs to societies. Increased antibiotic consumption (ABC) is linked to AMR emergence. Some of the known drivers of ABC are antibiotics over-prescription by physicians and their misuse by patients. Family doctors are recognised as important stakeholders in the control of ABC as they prescribe antibiotics and are considered a reliable source of medical information by patients. Therefore, it is important to explore their perceptions, especially in Romania, which has the highest ABC among European Union Member States. Furthermore, there is no published research exploring Romanian family doctors' perceptions regarding this phenomenon. METHODS: This was a qualitative study with data collection via semi-structured interviews among 12 family doctors. Manifest and latent content analysis was used to gain an in-depth understanding of their perceptions. Findings were mapped onto the domains of the Behaviour Change Wheel to facilitate a theory driven systematization and analysis. RESULTS: Two main subthemes emerged: i) factors affecting ABC and prescribing and ii) potential interventions to tackle ABC and antibiotic resistance. The factors were further grouped in those that related to the perceived behaviour of family doctors or patients as well as those that had to do with the various systems, local contexts and the COVID-19 pandemic. An overarching theme: 'family doctors in Romania see their role differently when it comes to antibiotic resistance and perceive the lack of patient education or awareness as one of the major drivers of ABC' was articulated. The main findings suggested that the perceived factors span across the capability, opportunity and motivational domains of the behaviour change wheel and could be addressed through a variety of interventions - some identified by the participants. Findings can also be viewed through cultural lenses which shed further light on the family doctor- patient dynamic when it comes to antibiotics use. CONCLUSION: Potential interventions to tackle identified factors emerged, revolving mostly on efforts to educate patients or the public. This exploratory research provides key perspectives and facilitates further research on potential interventions to successfully address AMR in Romania or similar settings.


Subject(s)
COVID-19 , Pandemics , Humans , Romania , Physicians, Family , Drug Resistance, Microbial , Anti-Bacterial Agents/therapeutic use
6.
Antimicrob Resist Infect Control ; 12(1): 32, 2023 04 13.
Article in English | MEDLINE | ID: covidwho-2292523

ABSTRACT

BACKGROUND: Due to the substantial increase in the use of disinfectants containing quaternary ammonion compounds (QACs) in healthcare and community settings during the COVID-19 pandemic, there is increased concern that heavy use might cause bacteria to develop resistance to QACs or contribute to antibiotic resistance. The purpose of this review is to briefly discuss the mechanisms of QAC tolerance and resistance, laboratory-based evidence of tolerance and resistance, their occurrence in healthcare and other real-world settings, and the possible impact of QAC use on antibiotic resistance. METHODS: A literature search was conducted using the PubMed database. The search was limited to English language articles dealing with tolerance or resistance to QACs present in disinfectants or antiseptics, and potential impact on antibiotic resistance. The review covered the period from 2000 to mid-Jan 2023. RESULTS: Mechanisms of QAC tolerance or resistance include innate bacterial cell wall structure, changes in cell membrane structure and function, efflux pumps, biofilm formation, and QAC degradation. In vitro studies have helped elucidate how bacteria can develop tolerance or resistance to QACs and antibiotics. While relatively uncommon, multiple episodes of contaminated in-use disinfectants and antiseptics, which are often due to inappropriate use of products, have caused outbreaks of healthcare-associated infections. Several studies have identified a correlation between benzalkonium chloride (BAC) tolerance and clinically-defined antibiotic resistance. The occurrence of mobile genetic determinants carrying multiple genes that encode for QAC or antibiotic tolerance raises the concern that widespread QAC use might facilitate the emergence of antibiotic resistance. Despite some evidence from laboratory-based studies, there is insufficient evidence in real-world settings to conclude that frequent use of QAC disinfectants and antiseptics has promoted widespread emergence of antibiotic resistance. CONCLUSIONS: Laboratory studies have identified multiple mechanisms by which bacteria can develop tolerance or resistance to QACs and antibiotics. De novo development of tolerance or resistance in real-world settings is uncommon. Increased attention to proper use of disinfectants is needed to prevent contamination of QAC disinfectants. Additional research is needed to answer many questions and concerns related to use of QAC disinfectants and their potential impact on antibiotic resistance.


Subject(s)
Ammonium Compounds , Anti-Infective Agents, Local , COVID-19 , Disinfectants , Humans , Disinfectants/pharmacology , Disinfectants/chemistry , Anti-Infective Agents, Local/pharmacology , Quaternary Ammonium Compounds/pharmacology , Pandemics/prevention & control , Drug Resistance, Microbial , Bacteria , Anti-Bacterial Agents/pharmacology
7.
J Hazard Mater ; 453: 131428, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-2306613

ABSTRACT

The propagation of antimicrobial resistance (AMR) is constantly paralyzing our healthcare systems. In addition to the pressure of antibiotic selection, the roles of non-antibiotic compounds in disseminating antibiotic resistance genes (ARGs) are a matter of great concerns. This study aimed to explore the impact of different disinfectants on the horizontal transfer of ARGs and their underlying mechanisms. First, the effects of different kinds of disinfectants on the conjugative transfer of RP4-7 plasmid were evaluated. Results showed that quaternary ammonium salt, organic halogen, alcohol and guanidine disinfectants significantly facilitated the conjugative transfer. Conversely, heavy-metals, peroxides and phenols otherwise displayed an inhibitory effect. Furthermore, we deciphered the mechanism by which guanidine disinfectants promoted conjugation, which includes increased cell membrane permeability, over-production of ROS, enhanced SOS response, and altered expression of conjugative transfer-related genes. More critically, we also revealed that guanidine disinfectants promoted bacterial energy metabolism by enhancing the activity of electron transport chain (ETC) and proton force motive (PMF), thus promoting ATP synthesis and flagellum motility. Overall, our findings reveal the promotive effects of disinfectants on the transmission of ARGs and highlight the potential risks caused by the massive use of guanidine disinfectants, especially during the COVID-19 pandemic.


Subject(s)
COVID-19 , Disinfectants , Humans , Anti-Bacterial Agents/pharmacology , Disinfectants/pharmacology , Genes, Bacterial , Pandemics , Drug Resistance, Microbial/genetics , Guanidines , Gene Transfer, Horizontal , Plasmids/genetics
9.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: covidwho-2276019

ABSTRACT

Infectious diseases caused by antimicrobial-resistant strains have become a serious threat to global health, with a high social and economic impact. Multi-resistant bacteria exhibit various mechanisms at both the cellular and microbial community levels. Among the different strategies proposed to fight antibiotic resistance, we reckon that the inhibition of bacterial adhesion to host surfaces represents one of the most valid approaches, since it hampers bacterial virulence without affecting cell viability. Many different structures and biomolecules involved in the adhesion of Gram-positive and Gram-negative pathogens can be considered valuable targets for the development of promising tools to enrich our arsenal against pathogens.


Subject(s)
Anti-Bacterial Agents , Bacterial Adhesion , Anti-Bacterial Agents/pharmacology , Virulence , Bacteria , Drug Resistance, Microbial , Microbial Sensitivity Tests , Biofilms
10.
J Epidemiol Glob Health ; 13(1): 91-104, 2023 03.
Article in English | MEDLINE | ID: covidwho-2283164

ABSTRACT

BACKGROUND AND AIM: COVID-19 has shown how crucial awareness of the need to protect public health is to global security. Antibiotic resistance due to antibiotic misuse is seen as a worldwide health issue. Antibiotic use was significant during the COVID-19 epidemic, according to several nations. This research aims to investigate public attitudes on COVID-19, antibiotic resistance, and preventive measures during the COVID-19 pandemic in the Middle East. METHODS: An online quantitative cross-sectional study in 17 Arabic nations was carried out between January 3 and March 4, 2022, using a structured questionnaire to evaluate participants' knowledge of COVID-19, their attitudes toward the new standard during the pandemic, and their use of antibiotics, and their resistance to them. The research was available to all Arabic people over 18 nations in the middle east. A convenient snowball sampling technique was used. SPSS version 20.0 was used to analyze the data. To analyze the results, binominal logistic regression was utilized. Statistical significance was defined as a p value of 0.05. RESULTS: Of the 6145 responders, 24.1% believed COVID-19 might spread to asymptomatic people, whereas 13.6% thought using antibiotics would accelerate recovery from any illness. Moreover, half of the respondents said antibiotics only work against bacteria (64.6%). 70.8% of participants adopted the necessary safety measures. More than a third of respondents strongly supported placing foreign immigrants in quarantine (33%). However, more than 50% of those surveyed (52.5%) firmly supported using face masks in all public settings. Individuals with a medical education background had 2.6 times more appropriate understanding of antibiotic resistance than others. Furthermore, participants in the 30-49 age range had a better handle on the use of antibiotics and antibiotic resistance than other respondents by 1.1 times. CONCLUSION: Arab Health authorities should reconsider this health issue as soon about the inadequate level of awareness toward antibiotic use, resistance, and preventative practices during COVID-19. Many suggested strategies, especially solving the irregular antibiotic prescriptions during a COVID19 pandemic, should be implemented to increase public awareness of COVID19.


Subject(s)
COVID-19 , Humans , Cross-Sectional Studies , Pandemics/prevention & control , Arabs , Drug Resistance, Microbial , Surveys and Questionnaires , Middle East , Anti-Bacterial Agents/therapeutic use , Health Knowledge, Attitudes, Practice
12.
Sci Total Environ ; 871: 162035, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2236822

ABSTRACT

Aerosols are an important route for the transmission of antibiotic resistance genes (ARGs). Since the 2019 (COVID-19) pandemic, the large-scale use of disinfectants has effectively prevented the spread of environmental microorganisms, but studies regarding the antibiotic resistance of airborne bacteria remain limited. This study focused on four functional urban areas (commercial areas, educational areas, residential areas and wastewater treatment plant) to study the variations in ARG abundances, bacterial community structures and risks to human health during the COVID-19 pandemic in aerosol. The results indicated the abundance of ARGs during the COVID-19 period were up to approximately 13-fold greater than before the COVID-19 period. Large-scale disinfection resulted in a decrease in total bacterial abundance. However, chlorine-resistant bacteria tended to be survived. Among the four functional areas, the diversity and abundance of aerosol bacteria were highest in commercial aera. Antibiotic susceptibility assays suggested elevated resistance of isolated bacteria to several tested antibiotics due to disinfection exposure. The potential exposure risks of ARGs to human health were 2 times higher than before the COVID-19 pandemic, and respiratory intake was the main exposure route. The results highlighted the elevated antibiotic resistance of bacteria in aerosols that were exposed to disinfectants after the COVID-19 pandemic. This study provides theoretical guidance for the rational use of disinfectants and control of antimicrobial resistance.


Subject(s)
COVID-19 , Disinfectants , Humans , Pandemics , Genes, Bacterial , Respiratory Aerosols and Droplets , Drug Resistance, Microbial/genetics , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Disinfectants/pharmacology
13.
BMC Microbiol ; 23(1): 28, 2023 01 25.
Article in English | MEDLINE | ID: covidwho-2214528

ABSTRACT

BACKGROUND: Antimicrobial resistance has a direct impact on the ability to treat common infections, and this was worsened during the COVID-19 pandemic. Worldwide surveillance studies are lacking and resistance rates vary spatially, so frequent local surveillance reports are required to guide antimicrobial stewardship efforts. This study aims to report our common local uropathogens and their antibiogram profiles in our community during the COVID era. METHODS: A retrospective study included patients referred to our urology units with urine culture and sensitivity. All bacterial strains were identified, and their antibiotic susceptibilities were tested. RESULTS: Out of 2581 urine culture results recruited, 30% showed microbiological proof of infection. The majority, 486 (63.4%), were isolated from females. The most frequent isolates were Escherichia coli (44.4%) and Staphylococcus aureus (17.8%). The resistance rates ranged from 26.9 to 79.7%. Piperacillin-tazobactam antibiotic had the lowest resistance rate. The multi-drug resistance pattern was recorded in 181 (23.9%) of the isolates; 159/597 (26.6%) Gram-negative and 22/160 (13.8%) Gram-positive isolates. CONCLUSIONS: Alarming rates of antimicrobial resistance were detected, which stresses the significance of following infection control policies and establishing national antimicrobial stewardship standards.


Subject(s)
COVID-19 , Urinary Tract Infections , Female , Humans , Urinary Tract Infections/microbiology , Pandemics , Retrospective Studies , COVID-19/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial , Microbial Sensitivity Tests , Escherichia coli , Hospitals , Drug Resistance, Bacterial
14.
Sci Total Environ ; 867: 161527, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2183117

ABSTRACT

Disinfectants are routinely used in human environments to control and prevent the transmission of microbial disease, and this is particularly true during the current COVID-19 crisis. However, it remains unclear whether the increased disinfectant loadings to wastewater treatment plants facilitate the dissemination of antibiotic resistance genes (ARGs) in sewage sludge microbiomes. Here, we investigated the impacts of benzalkonium chlorides (BACs), widely used disinfectants, on ARGs profiles and microbial community structures in sewage sludge by using high-throughput quantitative PCR and Illumina sequencing. A total of 147 unique ARGs and 39 mobile genetic elements (MGEs) were detected in all sewage sludge samples. Our results show that exposure to BACs disinfectants at environmentally relevant concentrations significantly promotes both the diversity and absolute abundance of ARGs in sludge microbiomes, indicating the co-selection of ARGs by BACs disinfectants. The enrichment of ARGs abundance varied from 2.15-fold to 3.63-fold compared to controls. In addition, BACs exposure significantly alters bacterial and protistan communities, resulting in dysbiosis of the sludge microbiota. The Mantel test and Procrustes analysis confirm that bacterial communities are significantly correlated with ARGs profiles under BACs treatments. The structural equation model explains 83.8 % of the total ARGs variation and further illustrates that the absolute abundance of MGEs exerts greater impacts on the variation of absolute abundance of ARGs than microbial communities under BACs exposure, suggesting BACs may promote antibiotic resistance by enhancing the horizontal gene transfer of ARGs across sludge microbiomes. Collectively, our results provide new insights into the proliferation of antibiotic resistance through disinfectant usage during the pandemic and highlight the necessity to minimize the environmental release of disinfectants into the non-target environment for combating antibiotic resistance.


Subject(s)
COVID-19 , Disinfectants , Microbiota , Humans , Sewage/microbiology , Benzalkonium Compounds/pharmacology , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/genetics
16.
Environ Res ; 219: 115139, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2165280

ABSTRACT

The disposal of healthcare waste without prior elimination of pathogens and hazardous contaminants has negative effects on the environment and public health. This study aimed to profile the complete microbial community and correlate it with the antibiotic compounds identified in microwave pre-treated healthcare wastes collected from three different waste operators in Peninsular Malaysia. The bacterial and fungal compositions were determined via amplicon sequencing by targeting the full-length 16S rRNA gene and partial 18S with full-length ITS1-ITS2 regions, respectively. The antibiotic compounds were characterized using high-throughput spectrometry. There was significant variation in bacterial and fungal composition in three groups of samples, with alpha- (p-value = 0.04) and beta-diversity (p-values <0.006 and < 0.002), respectively. FC samples were found to acquire more pathogenic microorganisms than FA and FV samples. Paenibacillus and unclassified Bacilli genera were shared among three groups of samples, meanwhile, antibiotic-resistant bacteria Proteus mirabilis, Enterococcus faecium, and Enterococcus faecalis were found in modest quantities. A total of 19 antibiotic compounds were discovered and linked with the microbial abundance detected in the healthcare waste samples. The principal component analysis demonstrated a positive antibiotic-bacteria correlation for genera Pseudomonas, Aerococcus, Comamonas, and Vagococcus, while the other bacteria were negatively linked with antibiotics. Nevertheless, deep bioinformatic analysis confirmed the presence of blaTEM-1 and penP which are associated with the production of class A beta-lactamase and beta-lactam resistance pathways. Microorganisms and contaminants, which serve as putative indicators in healthcare waste treatment evaluation revealed the ineffectiveness of microbial inactivation using the microwave sterilization method. Our findings suggested that the occurrence of clinically relevant microorganisms, antibiotic contaminants, and associated antibiotic resistance genes (ARGs) represent environmental and human health hazards when released into landfills via ARGs transmission.


Subject(s)
COVID-19 , Microbiota , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , beta-Lactams , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Pandemics , COVID-19/genetics , Bacteria/genetics , Drug Resistance, Microbial/genetics
17.
Int J Mycobacteriol ; 11(4): 343-348, 2022.
Article in English | MEDLINE | ID: covidwho-2163901

ABSTRACT

Mycobacterium tuberculosis is the leading cause of mortality worldwide due to a single bacterial pathogen. Of concern is the negative impact that the COVID-19 pandemic has had on the control of tuberculosis (TB) including drug-resistant forms of the disease. Antimicrobial resistance increases the likelihood of worsened outcomes in TB patients including treatment failure and death. Multidrug-resistant (MDR) strains, resistant to first-line drugs isoniazid and rifampin, and extensively drug-resistant (XDR) strains with further resistance to second-line drugs (SLD), threaten control programs designed to lower TB incidence and end the disease as a public health challenge by 2030, in accordance with UN Sustainable Development Goals. Tackling TB requires an understanding of the pathways through which drug resistance emerges. Here, the roles of acquired resistance mutation, and primary transmission, are examined with regard to XDR-TB. It is apparent that XDR-TB can emerge from MDR-TB through a small number of additional resistance mutations that occur in patients undergoing drug treatment. Rapid detection of resistance, to first-line drugs and SLD, at the initiation of and during treatment, and prompt adjustment of regimens are required to ensure treatment success in these patients. Primary transmission is predicted to make an increasing contribution to the XDR-TB caseload in the future. Much work is required to improve the implementation of the World Health Organization-recommended infection control practices and block onward transmission of XDR-TB patients to contacts including health-care workers. Finally, limiting background resistance to fluoroquinolones in pre-XDR strains of M. tuberculosis will necessitate better antimicrobial stewardship in the broader use of this drug class.


Subject(s)
COVID-19 , Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Pandemics , COVID-19/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Mycobacterium tuberculosis/genetics , Drug Resistance, Microbial , Drug Resistance, Multiple, Bacterial
18.
J Med Virol ; 95(1): e28403, 2023 01.
Article in English | MEDLINE | ID: covidwho-2157852

ABSTRACT

This study investigated the bacterial causes of superinfections and their antibiotic resistance pattern in severe coronavirus disease 2019 (COVID-19) patients admitted to the intensive care unit (ICU) of Razi Hospital in Ahvaz, southwest Iran. In this cross-sectional study, endotracheal tube (ETT) secretion samples of 77 intubated COVID-19 patients, confirmed by reverse transcription-quantitative polymerase chain reaction, were investigated by standard microbiology test and analytical profile index kit. Antibiotic susceptibility testing was performed by disc diffusion. The presence of Haemophilus influenzae and Mycoplasma pneumoniae was investigated by the polymerase chain reaction (PCR). Using culture and PCR methods, 56 (72.7%) of the 77 COVID-19 patients (mean age of 55 years, 29 male and 27 female) had superinfections. Using culture, 67 isolates including 29 (43.2%) Gram-positive and 38 (56.7%) Gram-negative bacteria (GNB) were identified from 49 COVID-19 patients. The GNB were more predominant than the Gram-positive pathogens. Klebsiella pneumoniae (28.4%, n = 19/67) was the most common isolate followed by Staphylococcus aureus (22.4%, n = 15/67). Using PCR, 10.4% (8/77) and 11.7% (9/77) of ETT secretion specimens had H. influenzae and M. pneumoniae amplicons, respectively. Gram-positive and Gram-negative isolates showed high resistance rates (>70.0%) to majority of the tested antibiotics including fluoroquinolone, carbapenems, and cephalosporins and 68.7% (46/67) of isolates were multidrug-resistant (MDR). This study showed a high frequency rate of superinfections by MDR bacteria among COVID-19 patients in southwest Iran. The prevention of long-term consequences caused by COVID-19, demands continuous antibiotic surveillance particularly in management of bacterial superinfections.


Subject(s)
COVID-19 , Superinfection , Humans , Male , Female , Middle Aged , Iran/epidemiology , Cross-Sectional Studies , COVID-19/epidemiology , Microbial Sensitivity Tests , Bacteria/genetics , Gram-Negative Bacteria/genetics , Intensive Care Units , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial
19.
Nature ; 610(7932): 540-546, 2022 10.
Article in English | MEDLINE | ID: covidwho-2084529

ABSTRACT

The spread of antibiotic resistance is attracting increased attention to combination-based treatments. Although drug combinations have been studied extensively for their effects on bacterial growth1-11, much less is known about their effects on bacterial long-term clearance, especially at cidal, clinically relevant concentrations12-14. Here, using en masse microplating and automated image analysis, we systematically quantify Staphylococcus aureus survival during prolonged exposure to pairwise and higher-order cidal drug combinations. By quantifying growth inhibition, early killing and longer-term population clearance by all pairs of 14 antibiotics, we find that clearance interactions are qualitatively different, often showing reciprocal suppression whereby the efficacy of the drug mixture is weaker than any of the individual drugs alone. Furthermore, in contrast to growth inhibition6-10 and early killing, clearance efficacy decreases rather than increases as more drugs are added. However, specific drugs targeting non-growing persisters15-17 circumvent these suppressive effects. Competition experiments show that reciprocal suppressive drug combinations select against resistance to any of the individual drugs, even counteracting methicillin-resistant Staphylococcus aureus both in vitro and in a Galleria mellonella larva model. As a consequence, adding a ß-lactamase inhibitor that is commonly used to potentiate treatment against ß-lactam-resistant strains can reduce rather than increase treatment efficacy. Together, these results underscore the importance of systematic mapping the long-term clearance efficacy of drug combinations for designing more-effective, resistance-proof multidrug regimes.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/pharmacology , Drug Combinations , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/cytology , Staphylococcus aureus/drug effects , Drug Resistance, Microbial/drug effects , Drug Synergism
20.
Microb Biotechnol ; 15(9): 2464-2475, 2022 09.
Article in English | MEDLINE | ID: covidwho-2019054

ABSTRACT

Poultry meat production is one of the most important agri-food industries in the world. The selective pressure exerted by widespread prophylactic or therapeutic use of antibiotics in intensive chicken farming favours the development of drug resistance in bacterial populations. Chicken liver, closely connected with the intestinal tract, has been directly involved in food-borne infections and found to be contaminated with pathogenic bacteria, including Campylobacter and Salmonella. In this study, 74 chicken livers, divided into sterile and non-sterile groups, were analysed, not only for microbial indicators but also for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Both bacteria and phages were detected in liver tissues, including those dissected under sterile conditions. The phages were able to infect Escherichia coli and showed a Siphovirus morphology. The chicken livers contained from 103 to 106 phage particles per g, which carried a range of ARGs (blaTEM , blaCTx-M-1 , sul1, qnrA, armA and tetW) detected by qPCR. The presence of phages in chicken liver, mostly infecting E. coli, was confirmed by metagenomic analysis, although this technique was not sufficiently sensitive to identify ARGs. In addition, ARG-carrying phages were detected in chicken faeces by qPCR in a previous study of the group. Comparison of the viromes of faeces and liver showed a strong coincidence of species, which suggests that the phages found in the liver originate in faeces. These findings suggests that phages, like bacteria, can translocate from the gut to the liver, which may therefore constitute a potential reservoir of antibiotic resistance genes.


Subject(s)
Bacteriophages , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteriophages/genetics , Chickens , Drug Resistance, Microbial/genetics , Escherichia coli , Genes, Bacterial , Liver
SELECTION OF CITATIONS
SEARCH DETAIL